
SPLITTING FAMILIES IN GALOIS COHOMOLOGY

CYRIL DEMARCHE AND MATHIEU FLORENCE

Abstract. Let k be a field, with absolute Galois group Γ. Let A/k be a finite

étale group scheme of multiplicative type, i.e. a discrete Γ-module. Let n ≥ 1
be an integer, and let x ∈ Hn(k,A) be a cohomology class. We show that

there exists a countable set I, and a familiy (Xi)i∈I of (smooth, geometrically

integral) k-varieties, such that the following holds. For any field extension l/k,
the restriction of x vanishes in Hn(l, A) if and only if (at least) one of the

Xi’s has an l-point. This is Theorem 4.1, which we state in a slighty more

general context, using Yoneda extensions. In the case where A is of p-torsion
for a prime number p, we moreover show that the Xi’s can be made into an

ind-variety, cf. Proposition 5.1. In the case n = 2, we note that one variety is

enough.

Introduction

Let k be a field, and let p be a prime number, which is invertible in k. The
notion of a norm variety was introduced in the study of the Bloch-Kato conjecture.
It is a key tool in the proof provided by Rost, Suslin and Voevodsky. The norm
variety X(s) of a pure symbol

s = (x1) ∪ (x2) ∪ . . . ∪ (xn) ∈ Hn(k, µ⊗np ),

where the xi’s are elements of k×, was constructed by Rost (cf. [6] or [3]). The
terminology ’norm variety’ reflects that it is defined through an inductive process
involving the norm of finite field extensions of degree p. It has the remarkable prop-
erty that, if l/k is a field extension, then the restriction of s vanishes in Hn(l, µ⊗np )
if and only if the l-variety X(s)l has a 0-cycle of degree prime-to-p. It enjoys nice
geometric features, which we will not mention here. For n ≥ 3, norm varieties are,
to the knowledge of the authors of this paper, known to exist for pure symbols only.
In this paper, we shall be interested in the following closely related problem. Let
A/k be a finite étale group scheme of multiplicative type, that is to say, a discrete
Γ-module. Consider a class x ∈ Hn(k,A). Does there exists a countable family of
smooth k-varieties (Xi)i∈I , such that, for every field extension l/k, the presence of
a l-point in (at least) one of the Xi’s is equivalent to the vanishing of x in Hn(l, A) ?
If such a family exist, can it always be endowed with the structure of an ind-variety?

We provide answers to those questions. The main results of the paper are the
following:
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Theorem 0.1 (Corollary 4.2, Theorem 5.1 and Corollary 5.4). Let A/k be a finite
étale group scheme of multiplicative type and let α ∈ Hn(k,A).

• There exists a countable family (Xi)i∈I of smooth geometrically integral k-
varieties, such that for any field extension l/k with l infinite, α vanishes in
Hn(l, A) if and only if Xi(l) 6= ∅ for some i.
• If n = 2, the family (Xi) can be replaced by a single smooth geometrically

integral k-variety.
• If A is p-torsion for some prime number p and n is arbitrary, then there is

such a family (Xi) which is an ind-variety.

Note that our main ”non formal” tool, as often (always?) in this context, is
Hilbert’s Theorem 90.

1. Notation and definitions.

In this paper, k is a field, with a given separable closure ks. We denote by
Γ := Gal(ks/k) the absolute Galois group. The letters d and n denote two positive
integers. We assume d to be invertible in k.

We denote by Md the Abelian category of finite Z/dZ-modules, and by MΓ,d

that of finite and discrete Γ-modules of d-torsion. The latter is equivalent to the
category of finite k-group schemes of multiplicative type, killed by d. We denote this
category by Mk,d. When no confusion can arise, we will identify these categories
without further notice. We have an obvious forgetful functor MΓ,d →Md.

1.1. Groups and cohomology. Let G be a linear algebraic k-group; that is,
an affine k-group scheme of finite type. We denote by H1(k,G) the set of iso-
morphism classes of G-torsors, for the fppf topology. It coincides with the usual
Galois cohomology set if G is smooth. Let ϕ : H → G be a morphism of lin-
ear algebraic k-groups. It induces, for every field extension l/k, a natural map
H1(l,H)→ H1(l, G), which we denote by ϕl,∗.

1.2. Yoneda Extensions. Let A be an Abelian category. For all n ≥ 0, A,B ∈ A,
we denote by YExtnA(A,B) (or YExtn(A,B)) the (additive) category of Yoneda
n-extensions of B by A, and by YExtnA(A,B) (or YExtn(A,B)) the Abelian group
of Yoneda equivalence classes in YExtn(A,B) .

Remark 1.1. The groups YExtnA(A,B) can also be defined as HomD(A)(A,B[n]),
where D(A) denotes the derived category of A.

Given A,B ∈ Md, we put YExtnd (A,B) := YExtnMd
(A,B). Given A,B ∈

Mk,d, we put YExtnk,d(A,B) := YExtnMk,d
(A,B).

Remark 1.2. Let A be a finite discrete Γ-module.
Let d be the exponent of A. Then there is a canonical isomorphism

YExtnk,d(Z/dZ, A)
∼−→ Hn(Γ, A)

where Hn(Γ, A) denotes the usual n-th cohomology group.

Remark 1.3. Let l/k be any field extension. For A,B ∈Mk,d, we have a restriction
map

Resl/k : YExtnk,d(A,B) −→ YExtnl,d(A,B).
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1.3. Lifting triangles. Let ϕ : H → G be a morphism of linear k-algebraic groups.
A lifting triangle (relative to ϕ) is a commutative triangle

T : Q
f //

HX ""

P

GX

��
X ,

where X is a k-scheme, Q −→ X (resp. P −→ X) is an HX -torsor (resp. a
GX -torsor), and where f is an H-equivariant morphism (formula on the functors
of points: f(h.x) = ϕ(h).f(x)).
Note that such a diagram is equivalent to the data of an isomorphism between the
GX -torsors P and ϕ∗(Q).
The k-scheme X is called the base of the lifting triangle T .
We have an obvious notion of isomorphism of lifting triangles.
Moreover, if η : Y −→ X is a morphism of k-schemes, we can form the pullback
η∗(T ); it is a lifting triangle, over the base Y .

1.4. Lifting varieties. Let ϕ : H → G be a morphism of linear k-algebraic groups.
Let P → Spec(k) be a torsor under the group G.

A geometrically integral k-variety X will be called a lifting variety (for the pair
(ϕ, P )) if it fits into a lifting triangle T :

Q F //

HX ##

P ×k X

GX

��
X ,

such that the following holds:

For every field extension l/k, with l infinite, and for every lifting triangle t:

Q
f //

Hl ##

P ×k l

Gl

��
Spec(l) ,

the set of l-rational points x : Spec(l) −→ X such that the pullback Tx := x∗(T )
is isomorphic to t (as a lifting triangle over Spec(l)) is Zariski-dense in X, hence
non-empty.

In particular, the variety X has an l-point if and only if the class of the G-torsor
P in H1(l, G) is in the image of the map ϕl,∗ : H1(l,H)→ H1(l, G).

1.5. Splitting families. LetA,B be objects ofMk,d. Pick a class x ∈ YExtnk,d(A,B).

A countable set (Xi)i∈I of (smooth, geometrically integral) k-varieties will be
called a splitting family for x if the following holds:
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For every field extension l/k, with l infinite, Resl/k(x) vanishes in YExtnl,d(A,B)
if and only if (at least) one of the l-varieties Xi possesses a l-point.

Whenever a splitting family exists, it is natural to ask whether it can be made
into an ind-variety. By this, we mean here that I = N and that, for each i ≥ 0, we
are given a closed embedding of k-varieties Xi −→ Xi+1.

2. Existence of lifting varieties.

This section contains the non formal ingredient of this paper, which may have
an interest on his own.

Let ϕ : H → G be a morphism of linear k-algebraic groups; that is, of affine
k-group schemes of finite type.
Let P → Spec(k) be a torsor under the group G.

The aim of this section is to construct a lifting variety for (ϕ, P ). Equivalently,
we will build a ”nice” k-variety X that is a versal object for H-torsors that lift the
G-torsor P , in the sense explained in the previous paragraph.

In particular, recall that X(l) 6= ∅ if and only if [Pl] lifts to H1(l,H), for every
field extension l/k, with l infinite.

To construct such an X, we mimick the usual construction of versal torsors (see
for instance [7], section I.5). We just have to push it slightly further.

There exists a finite dimensional k-vector space V endowed with a generically
free linear action of H. There exist a dense open subset V0 ⊂ A(V ), stable under
the action of H, and such that the geometric quotient

V0 −→ V0/H

exists, and is an H-torsor, which we denote by Q.

Form the quotient

Xϕ,P := (P ×k V0)/H,

where H acts on P via ϕ, and on V0 in the natural way. Projecting onto V0 induces
a morphism

π : Xϕ,P −→ V0/H,

which can also be described as the twist of P by the H-torsorQ, over the base V0/H.

Note that Xϕ,P depends on the choice of V .

If we denote by Q′ the pullback via π of the H-torsor Q, there is a natural lifting
triangle Tϕ,P :

Q′

H $$

// Xϕ,P ×k P

G

��
Xϕ,P
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Its existence is explained by the following key fact. If Y := V0/H, then for any
Y -scheme S, a point

s ∈ Xϕ,P (S) = HomY−sch(S,Xϕ,P )

is exactly the same as an H-equivariant morphism between Q×Y S and Xϕ,P ×k S,
over the base S (see for instance [2], théorème III.1.6.(ii)), i.e. it is the same as
a lifting triangle relative to ϕ over the base S, i.e. an isomorphism of G-torsors
between ϕ∗Q×Y S and Xϕ,P ×k S. We shall refer to this property as the universal
property of Xϕ,P .

Proposition 2.1. The k-variety Xϕ,P is a lifting variety for the pair (ϕ, P ).
In particular, Xϕ,P (l) 6= ∅ if and only if [Pl] lifts to H1(l,H).

Proof. Let l/k be a field extension with l infinite. Let

t : Q
f //

Hl $$

P ×k l

Gl

��
Spec(l)

be a lifting triangle, over l. By Hilbert’s Theorem 90 (for GLk(V )), the set of
l-rational points

x ∈ (V0/H)(l) = Homk−sch(Spec(l), V0/H)

such that x∗(Q) is isomorphic to Q (as G-torsors over l) is Zariski-dense. Let x be
such a point. Then the lifting triangle t corresponds to an isomorphism of G-torsors
between ϕ∗(Q) and P , over the base Spec(l). Since Q is isomorphic to x∗(Q), the
universal property of Xϕ,P implies that the lifting triangle t is isomorphic to the
fiber of Tϕ,P at an l-rational point of Xϕ,P . This finishes the proof.

�

Lemma 2.2. The k-variety Xϕ,P is smooth and geometrically unirational if ϕ :
H → G is surjective, or if G is smooth and connected.

Proof. To prove this, we can assume that k = k̄, in which case the torsor P is trivial.
Then Xϕ,P = (G × V0)/H . If G is smooth and connected, then it is k-rational.
Hence G×V0 is smooth, connected and k-rational as well. The quotient morphism

G× V0 −→ Xϕ,P

is an H-torsor, and smoothness and geometrical unirationality of its total space
implies that of its base.
Now, assume that ϕ is surjective. Denoting by K its kernel, we see that Xϕ,P =
V0/K, which implies the result. �

3. Triviality of Yoneda extensions in Abelian categories.

Let A be an Abelian category.
The following lemma is well-known.

Lemma 3.1. Let E = (0→ B
f0−→ E1

f1−→ · · · → En−1
fn−1−−−→ En

fn−→ A→ 0) be an
object in YExtn(A,B), and let E denotes its class in YExtn(A,B).
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Then E = 0 in YExtn(A,B) if and only if there exists F in YExtn−1(En, B)
and a morphism of complexes φ : E → F inducing the identity on B and En, i.e. a
commutative diagram (with exact rows)

(3.1) 0 // B
f0 //

id

��

E1
f1 //

φ1

��

. . . // En−1

fn−1 //

φn−1

��

En

id

��

fn // A // 0

0 // B // F1
g1 // . . . // Fn−1

gn−1 // En // 0 .

Proof. By [5], section 2 (see also [1], section 7.5, theorem 1, in the case of categories
of modules), E = 0 is and only if there exists a commutative diagram

(3.2) 0 // B //

��

E1
//

��

. . . // En−1
//

��

En //

��

A //

=

��

0

0 // B // G1
// . . . // Gn−1

// Gn // A // 0

0 // B
id //

OO

B //

OO

0 . . . 0 // 0 //

OO

A
id //

OO

A //

=

OO

0 .

Assume E = 0. In the previous diagram, let K ′ := Ker(Gn → A). Since we are
given a splitting s of Gn → A, there is a natural map En → K ′ defined via the
retraction of K ′ → Gn associated to s. Define F to be the pull-back of the exact
sequence

0→ B → G1 → · · · → Gn−1 → K ′ → 0

by the aforementionned morphism En → K ′. It is now clear that F satisfies the
statement of the Lemma.

To prove the converse, assume the existence of F and φ as in the Lemma. Define
Fi := Gi for all i ≤ n − 1, and Gn := En ⊕ A. Consider the maps hi := gi for
i ≤ n − 2, and let hn−1 := gn−1 ⊕ 0 : Gn−1 → Gn = En ⊕ A and hn : Gn =
En ⊕ A → A be the natural projection. Then the morphism φ together with the
map id ⊕ fn : En → Gn = En ⊕ A defines a commutative diagram of the shape
(3.2), hence E = 0. �

Definition 3.2. Given E ∈ YExtn(A,B) as in Lemma 3.1, a E-diagram is a pair
(F , φ), where F ∈ YExtn−1(En, B) and φ : En−1 → F is a morphism of complexes
inducing the identity on B and En (see diagram (3.1)).

We denote by Diag(E) (or DiagA(E)) the category of E-diagrams, where a
morphism between (F , φ) and (F ′, φ′) is a morphism between the commutative
diagrams associated (as in Lemma 3.1) to both E-diagrams, and by Diag(E) the set
of isomorphism classes in Diag(E).

Note that, given D = (F , φ) ∈ Diag(E), there is a natural group homomorphism
Aut(D)→ Aut(E).

Example 3.3. Consider the particular case when A is the category Mk,d. Recall
the obvious functor Mk,d →Md.

Then an object E of the category YExtnk,d(A,B) is exactly the same as an object
E ′ in YExtnd (A,B) together with a group homomorphism p : Γ→ Aut(E ′).

Moreover, a E-diagram D in the category Mk,d is the same as a E ′-diagram D′
in the category Md together with a homomorphism q : Γ→ Aut(D′) lifting p.
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Note that in this context, the groups Aut(D′) and Aut(E ′) are finite.

4. Splitting families

The following statement is the main result of the paper:

Theorem 4.1. Let A,B be objects of Mk,d. Pick a class e ∈ YExtnk,d(A,B).
Then, there exists a countable family (Xi)i∈I of smooth geometrically integral

k-varieties, which is a splitting family for e.

Proof. Let E ∈ YExtnk,d(A,B) be an element representing e. The n-extension E
defines a group homomorphism p : Γ → Aut(E) := AutMd

(E) (see example 3.3).
Consider the finite group G := Im(p): then p corresponds to a Spec(k)-torsor PE
under G.

Then Example 3.3 relates the triviality of the class e to the existence of a E-
diagram D in the categoryMd together with a lifting of the torsor PE to a subgroup
H of AutMd

(D). Since we are interested in splitting families satisfying nice geo-
metric properties, we have to make sure that the corresponding morphism H → G
is surjective (see lemma 2.2). To this end, we have to consider subgroups H of
AutMd

(D) surjecting to G.
Consider the category I of pairs (D, H) where D ∈ DiagMd

(E) is a diagram
(involving only finite Abelian groups of d-torsion), and H is a (finite) subgroup
of AutMd

(D) surjecting to G. For any i = (D, H) ∈ I, we define Xi to be the
k-variety XH→G,Pq

defined in Proposition 2.1, where H and G are considered as
finite constant algebraic groups over k.

Then the result is a consequence of Proposition 2.1 and Lemma 3.1. �

Corollary 4.2. Let A be a finite Γ-module and let α ∈ Hn(k,A).
Then there exists a countable family (Xi)i∈I of smooth geometrically integral

k-varieties, which is a splitting family for α.

Proof. Combine the previous theorem and remark 1.2. �

In general, the countable family (Xi)i∈I is in fact a functor from the category
I of pairs (D, H) introduced in the proof of Proposition 4.1 to the category of
k-varieties.

As we will see below, at least in the case where A is p-torsion (for a prime number
p), one can assume that the varieties Xi form an ind-variety.

5. Examples

5.1. p-torsion coefficients. Let us now focus on the special case where d = p is
prime. In this context, we have a more precise statement:

Theorem 5.1. Let A,B be p-torsion Γ-modules and E ∈ YExtnk,p(A,B) (resp.
α ∈ Hn(k,A)).

Then there exists a smooth geometrically integral ind-variety (Xi)i∈N, which is
a splitting family for E (resp. α).

Proof. Let E(a, b,m) denote the following n-extension of Fp-vector spaces:

E(a, b,m) := (0→ F0
g0−→ F1

g1−→ · · · → Fn−1
gn−1−−−→ Fn

gn−→ Fn+1 → 0) ,

where F0 := Fbp, F1 := Fbp ⊕ Fmp , F2 = · · · = Fn−1 = Fmp ⊕ Fmp , Fn = Fmp ⊕ Fap,
Fn+1 = Fap, and g0(x) := (x, 0), gi(x, y) = (y, 0) for 1 ≤ i ≤ n−1 and gn(x, y) := y.
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Lemma 5.2. Let E = (0 → B
f0−→ E1

f1−→ · · · → En−1
fn−1−−−→ En

fn−→ A → 0) be
an object in YExtnk,p(A,B). Let a := dim(A) and b := dim(B). Then there exist
an integer m, a Galois action on E(a, b,m) and a morphism φ : E → E(a, b,m)
in YExtnk,p(A,B), i.e. a commutative diagram of n-extensions of Fp-vector spaces
with actions of Γ:

0 // B
f0 //

φ0∼
��

E1
f1 //

φ1

��

. . . // En−1

fn−1 //

φn−1

��

En
fn //

φn

��

A

φn+1∼
��

// 0

0 // F0
g0 // F1

g1 // . . . // Fn−1

gn−1 // Fn
gn // Fn+1

// 0 ,

such that for all i, φi is injective.
Moreover, given another morphism ψ : E → E(a, b,m) with the same properties,

there exists an automorphism ε : E(a, b,m)→ E(a, b,m) in YExtnp (A,B) such that
ψ = ε ◦ φ.

Proof. Choose m large enough such that m ≥ dim(Ei) for all i. Then construct φi
inductively by choosing suitable basis of the vector spaces Ei.

The second part of the statement is basic linear algebra. �

We now need a second Lemma. Fix once and for all a n-extension E = (0 →
B

f0−→ E1
f1−→ · · · → En−1

fn−1−−−→ En
fn−→ A → 0) in YExtnk,p(A,B) representing E

such that:

• dimEn−1 is minimal.
• dimEn−2 is minimal among n-extensions representing E with minimal

dimEn−1.
• dimEn−3 is minimal among n-extensions representing E with minimal

dimEn−1 and minimal dimEn−2.
• . . .
• dimE1 minimal among n-extensions representing E with minimal dimEn−1,

. . . , minimal dimE2.

Let e := dimEn and b := dim(B).
We now claim the following Lemma:

Lemma 5.3. The class E is trivial if and only if there exists an integer m and a
E-diagram φ : E → E(e, b,m) in YExtnk,p(A,B) as follows:

0 // B
f0 //

φ0∼
��

E1
f1 //

φ1

��

. . . // En−1

fn−1 //

φn−1

��

En

φn∼
��

fn // A // 0

0 // F0
g0 // F1

g1 // . . . // Fn−1

gn−1 // Fn // 0 ,

where all φi are injective.

Proof. The existence of such a diagram implies the triviality of E, by Lemma 3.1.
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Let us now prove the converse. Assume E = 0. Then by Lemma 3.1, there exists
a E-diagram ϕ : E → G of the following shape:

(5.1) 0 // B
f0 //

ϕ0∼
��

E1
f1 //

ϕ1

��

. . . // En−1

fn−1 //

ϕn−1

��

En

ϕn∼
��

fn // A // 0

0 // G0
h0 // G1

h1 // . . . // Gn−1

hn−1 // Gn // 0 ,

We now prove by induction that all ϕi are injective. By construction, ϕn is
injective.

Assume that ϕi are injective for all k < i ≤ n. Let us prove that ϕk is also

injective. Consider the quotient Ek := Ek/Ker(ϕk) and define Ẽk−2 to be the
inverse image h−1

k−2(Ek−1) ⊂ Gk−2. Then we have a natural commutative diagram
with exact lines:

. . . // Ek−3

id

��

// Ek−2
//

��

Ek−1
//

id

��

Ek //

��

Ek+1
//

id

��

. . .

. . . // Ek−3

��

// Ẽk−2
//

��

Ek−1
//

��

Ek //

��

Ek+1
//

��

. . .

. . . // Gk−3
// Gk−2

// Gk−1
// Gk // Gk+1

// . . . .

In particular, the n-extension

0→ B
f0−→ E1

f1−→ · · · → Ek−3 → Ẽk−2 → Ek−1 → Ek → Ek+1 → · · · → En
fn−→ A→ 0

represents the class E, with dimEk ≤ dimEk. By minimality of the extension E ,
we have dimEk = dimEk, hence ϕk is injective.

Hence we proved the existence of a diagram (5.1) with injective vertical maps
ϕi.

Apply now Lemma 5.2 to the (n−1)-extension G, in order to get a commutative
diagram of exact sequences of Fp-vector spaces with Γ-action:

0 // B
f0 //

ϕ0∼
��

E1
f1 //

ϕ1

��

. . . // En−1

fn−1 //

ϕn−1

��

En

ϕn∼
��

fn // A // 0

0 // G0
h0 //

φ′0∼
��

G1
h1 //

φ′1
��

. . . // Gn−1

hn−1 //

φ′n−1

��

Gn //

φ′n∼
��

0

0 // F0
g0 // F1

g1 // . . . // Fn−1

gn−1 // Fn // 0 ,

where the maps φ′i are injective. To conclude the proof of Lemma 5.3, consider the
composed map φ := φ′ ◦ ϕ : E → E(e, b,m). �

Let us now prove Theorem 5.1.
Lemma 5.3 ensures that in order to construct the splitting varieties, it is sufficient

to consider only diagrams (of Fp-vector spaces) φ : E → E(e, b,m), for some m ∈ N,
i.e. diagrams of the following shape (Lemma 5.3 essentially says that such diagrams
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are cofinal in the category of diagrams):

(5.2) 0 // B
f0 //

φ0∼
��

E1
f1 //

φ1

��

. . . // En−1

fn−1 //

φn−1

��

En

φn∼
��

fn // A // 0

0 // F0
g0 // F1

g1 // . . . // Fn−1

gn−1 // Fn // 0 ,

where all φi are injective.
In addition, the second part of Lemma 5.2 implies that one only needs to consider

one such diagram for each m (since such diagrams with the same m are equivalent
up to an automorphism of E(e, b,m)).

Therefore, let us fix, for all m ∈ N (sufficiently large), one diagram Dm of the
shape (5.2) in the category of Fp-vector spaces, in a compatible way: the diagram
Dm+1 for the integer m + 1 is obtained from the diagram Dm associated to m by
composing the morphism φm : E → E(e, b,m) with the natural (injective) morphism
E(e, b,m)→ E(e, b,m+ 1).

We have defined a direct system of diagrams Dm. The n-extension E defines a ho-
momorphism q : Γ→ Aut(E), hence a Spec(k)-torsor Pq. For all m, let Xm denotes
the k-variety XAut(Dm)→Aut(E),Pq

defined in Proposition 4.1. By functoriality of the
construction of these varieties and by the natural (injective) group homomorphisms
Aut(Dm)→ Aut(Dm+1), we get a direct system of k-varieties Xm.

In addition, the second part of Lemma 5.2 implies that the morphisms Aut(Dm)→
Aut(E) are surjective, hence the varieties Xm are smooth and geometrically unira-
tional.

To conclude the proof, recall that those varieties Xm are cofinal among the
varieties (Xi)i∈I that appear in Proposition 4.1. �

5.2. 2-extensions. In this section, let d be arbitrary. We restrict to the special
case of YExt2

k(A,B) and H2(k,A), where the splitting family is smaller.

Corollary 5.4. Let A,B be finite d-torsion Γ-modules and E ∈ YExt2
k,d(A,B)

(resp. α ∈ H2(k,A)).
Then, there exists a finite family X1, . . . , Xn of smooth geometrically integral k-

varieties (resp. one smooth geometrically integral k-variety X), which is a splitting
family for E (resp. α).

Proof. Let E = (0 → B → E1 → E2 → A → 0) be a 2-extension of d-torsion
Γ-modules representing E. A E-diagram is a commutative diagram with exact lines
in the category of finite d-torsion abelian groups:

(5.3) 0 // B //

id∼
��

E1
//

φ1

��

E2
//

id∼
��

A // 0

0 // B // F1
// E2

// 0 .

In particular, there are only finitely many such E-diagrams. Therefore Proposition
4.1 gives the required result in the case of Yoneda extensions.

In the Galois cohomology case, one has to consider diagrams (5.3) with A =
Z/dZ. Using Pontryagin duality Hom(·,Z/dZ), it is equivalent to consider diagrams
(5.3) with B = Z/dZ. In this case, the last row of the diagram splits, hence such
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a diagram is unique up to isomorphism (in the category Md). Which proves that
one splitting variety is enough. �

Remark 5.5. In the Galois cohomology case, Corollary 5.4 recovers a result of
Krashen (see [4]).
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